Time-Resolved Nonlinear Nanoscope

(research in collaboration with Prof. Wolfgang Rudolph, University of New Mexico, Albuquerque, NM)

One of the most promising methods of chemical imaging below the diffraction limit of visible light is to scan a tip that is much smaller than the wavelength of visible light across the sample. When this tip is irradiated with a laser, the light field is significantly concentrated under the tip, leading to an enhancement of light-matter interaction. Consequently, the spatial resolution of imaging modalities that derive the signal from the enhanced light-matter interaction is mainly determined by the size of the tip. Such methods can also be combined with femtosecond time resolution by a pump-probe scheme using time-delayed pulses.
We develop a multi-channel nonlinear nanoscope with femtosecond time resolution that uses nonlinear optical processes to probe the sample. We envision a proto-type instrument that can produce images with sub-wavelength resolution by detecting (i) third-harmonic generation (THG), (ii) stimulated parametric four-wave mixing (SPFWM), (iii) second-harmonic generation (SHG) or (iv) multi-photon fluorescence (MPF).
Besides the obvious multiple applications in biology in medicine, this device can be used to scrutinize the physical processes when optical surfaces are damaged by high-intensity laser radiation. Potentially, this could lead to enormous improvement of the optics in high-power laser systems, e.g. in the National Ignition Facility (NIF).

Possible implementations are:

1. Modified AFM with solid (silicon) tip:

2. Modified SNOM with drawn fiber tip:

3. Modified SNOM with fiber tip in transmission:



       [1]   W. Denk, J. Strickler, W. Webb "Two-photon laser scanning fluorescence microscopy". Science 248 (1990) 4951

[2]    M. G. L. Gustafsson "Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution" Proc. of the Nat. Acad. of Science 102 (2005) 13081

       [3]    S. W. Hell, J. Wichmann “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy” Opt. Lett. 19 (1994) 780

[4]    https://en.wikipedia.org/wiki/Photoactivated_localization_microscopy
[5]    L. Novotny, B. Hecht “Principles of Nano-Optics” Cambridge University Press, New York 2006

[6]    R. Wiesendanger “Scanning Probe Microscopy and Spectroscopy - Methods and Applications” Cambridge University Press, Cambridge 1994

[7]  L. Novotny, D. W. Pohl, and B. Hecht “Scanning near-field optical probe with ultrasmall spot size” Opt. Lett. 20 (1995) 970

[8]  A. V. Zayats, V. Sandoghdar “Apertureless near-field optical microscopy via local second harmonic generation” Journal of Microscopy 202 (2001) 94

[9]  L. Novotny “From near-field optics to optical anntennas” Physics Today, July 2011, 47

[10] Feng Lu, Mingzhou Jin and Mikhail A. Belkin "Tip-enhanced infrared nanospectroscopy via molecular expansion force detection" Nature Photonics 8 (2014) 307

[11]  L.P. Wackett "Super-resolution microscopy". Environmental Microbiology 18 (2016) 1301

[12]  F. Korte, S. Nolte, B.N. Chichkov, T. Bauer, G. Kamlage, T.Wagner, C. Fallnich, H. Welling “Far-field and near-field material processing with femtosecond laser pulses” Appl. Phys. A 69 (1999) S7

[13]     A. Pack, M. Hietschold, R. Wannemacher “Propagation of femtosecond light pulses through near-field optical aperture probes” Ultramicroscopy 92 (2002) 251

[14]      K. Karki, M. Namboodiri, T. Zeb Khan, and A. Maternya " Pump-probe scanning near field optical microscopy: Sub-wavelength resolution chemical imaging and ultrafast local dynamics" Appl. Phys. Lett. 100 (2012) 153103

[15]    G. X. Ni, L. Wang, M. D. Goldflam, M. Wagner, Z. Fei, A. S. McLeod, M. K. Liu, F. Keilmann, B. Özyilmaz, A. H. Castro Neto, J. Hone, M. M. Fogler, and D. N. Basov "Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene" Nature Photonics 10 (2016) 244

[16]    J. Jasapara and W. Rudolph “Characterization of sub-10-fs pulse focusing with high-numerical-aperture microscope objectives” Opt. Lett. 24 (1999) 777

       [17]    M. N. Miranda, P. B. Oliveira, L. M. Bernardo, F. X. Kärtner, and H. M. Crespo “Space-time focusing of phase-stabilized nanojoule-level 2.5-cycle pulses to peak intensities >3x1013 W/cm2 at 80 MHz” paper CF1.1, CLEO Europe, Munich 2009

[18]  B. Piglosiewicz, D. Sadiq, M. Mascheck, S. Schmidt, M. Silies, P. Vasa, and C. Lienau “Ultrasmall bullets of light—focusing few-cycle light pulses to the diffraction limit” Optics Express 19 (2010) 14451

[19]      J. Jahng, J. Brocious, D. A. Fishman, St. Yampolsky, D. Nowak, F. Huang, V. A. Apkarian, H. K. Wickramasinghe, and E. O. Potma "Ultrafast pump-probe force microscopy with nanoscale resolution" Appl. Phys. Lett. 106 (2015) 083113

[20]    F. Kuschewski, S. C. Kehr, B. Green, Ch. Bauer, M. Gensch, and L. M. Eng “Optical nanoscopy of transient states in condensed matter “ Nature - Scientific Reports 5 (2015) 12582